II.B. Support actions to reduce or eliminate contaminant impacts

The Recovery Program, in collaboration with UDWR, FWS, and Texas A&M University, is currently researching Selenium uptake in razorback sucker at Stewart Lake and Johnson Bottom wetlands. Field samples of age-0 razorback sucker (incidental mortalities), larval razorback, and other surrogate species have been collected opportunistically since 2013. Selenium results are currently being analyzed and are expected to be released in 2017, in support of a revised Stewart Lake management plan.

Pesticide exposure prevention (report in draft 2016) The Grand Junction office continues to work with the local mosquito control agency to prevent mosquitocide exposure of endangered Colorado River fish in backwater and wetland habitat in approximately 30 miles of the Colorado and Gunnison rivers. The total treatment area is approximately 73 square miles, or a total of 46,720 acres. In 2016 the Mosquito abatement office appointed a new director, Barb Osmundson has met with them several times regarding mosquito control near critical habitat.

Surface Water Sampling For Pesticides, Pharmaceuticals, Personal Care Product, Waste Water Indicators (report in draft 2016)

Beginning in 2009, EPA Region 8 has supported the Colorado Water Quality Control Division (WQCD) in the sampling and analyses of pesticides data. In 2009-to present, along with the pesticide analyses, the EPA Region 8 Laboratory analyzed for a suite of pharmaceuticals, personal care products (PPCPs), and waste water indicators. As more is learned about the health and aquatic life effects those parameters have and at what concentrations, the WQCD can address new criteria in a meaningful way. The focus of the 2011&12 projects were on the Denver Metro Area streams. During 2013, the project added other study areas, including sampling sites in the Grand Valley. Pesticides are of particular interest because of the Grand Valley’s irrigated agricultural drainage into several washes. These washes empty into critical habitat in the 18-mile reach of the Colorado River. The Grand Junction, CO EC staff collected monthly samples from four Grand Valley tributaries from March-November, 2013 and 2014. Sampling occurred on a monthly basis April – November. Thus far, results have shown an interesting variety of chemicals, including the presence of the herbicide 2,4D in the tributaries, and an array of pharmaceuticals below wastewater treatment facilities. We now have 2 years of data on 6 – 8 tributaries that enter the 18-mile reach of the Colorado River. One of the areas of concern is the outflow from the Fruita wastewater treatment facility that flows into a backwater that endangered fish are known to use. Contaminants that
were found in the wastewater effluent and downstream include a suite of pharmaceuticals including antidepressants, blood pressure medications, narcotics, and several others. Sampling efforts in 2015 were moved from sites in the Grand Valley to sites in the Uncompahgre Valley between Delta and Montrose in western Colorado. Continued sampling is planned for the Uncompahgre Valley in 2016. Sites include tributaries that empty into the Uncompahgre and Gunnison rivers.

The Grand Junction EC staff conducted a study from 2008-2009 to assess mercury exposure to the endangered Colorado pikeminnow. The objectives of this investigation were to determine mercury concentrations in Colorado pikeminnow (CPM) collected from several different river reaches within critical habitat by using biopsied muscle plugs, and to develop a regression equation between CPM length and mercury concentrations. This study involves a cooperative partnership of Service fisheries and EC staff from Colorado, Utah, and New Mexico, staff associated with both the San Juan and upper Colorado River Recovery Programs, and state fisheries staff from Colorado and Utah.

An FY2013 interim report was submitted to the Service’s R9, Division of Environmental Quality. A final report will hopefully be completed in FY2016. The Service presented the results of this investigation at the annual Colorado River Endangered Fish Recovery Program Researchers Meeting in January, 2010. Results were presented to the Mercury Technical Advisory Council of the Colorado Division of Water Quality on December 6th, 2012.

The combined reaches of the Green River sampled covered nearly 205 river miles. The combined reaches of the Colorado River sampled covered nearly 80 river miles. The White River sampled covered nearly 103 river miles, the Yampa River sampled covered nearly 22 river miles, and the San Juan River sampled covered nearly 40 miles. Ten Colorado pikeminnow muscle plug samples were taken from river reach, with the exception of the San Juan River where 20 muscle plug samples were collected.

Roundtail chub populations in Utah have declined precipitously since the 1970s and populations in the Colorado River below Lake Powell are on the Candidate List of the Endangered Species Act. Recent data from the Utah Division of Wildlife suggest population trends continue to decline. The Utah EC office collaborated with Utah Division of Natural Resources to assess exposure and potential risk of mercury exposure in roundtail chub, a Utah state sensitive species, collected from the White River, Utah.

Beckvar et al. 2005 suggested a threshold-effect level of ≤0.2 µg/g wet weight (ww) mercury in whole body fish as protective of juvenile and adult fish. Compared with this threshold, mercury
concentrations in Colorado pikeminnow were elevated. Colorado pikeminnow within critical habitats, and in larger fish collected from the San Juan River, are above this threshold that may be indicative of sub-lethal effects. Seventy-eight percent of Colorado pikeminnow collected (98 out of 126) had expected whole body mercury concentrations that exceeded Beckvar et al. (2005) threshold of effect level of 0.2 µg/g wet weight (ww). Based on effect level ranges discussed in publications, 2 to 60 percent of the Colorado pikeminnow sampled have mercury concentrations in fish muscle or whole body that are associated with biochemical changes, tissue damage, and reduced reproduction in other fish species. Additionally, mercury exposure and accumulation was found in all subpopulations of Colorado pikeminnow sampled and throughout their critical habitat, which increases the relative risk of mercury contamination to the recovery of this species. Because of the high mercury concentrations found in roundtail chubs (0.11-1.97 µg/g ww, mean = 0.6 µg/g ww) and Colorado pikeminnow (0.43-1.83 µg/g ww, mean = 1.1 µg/g ww) collected from the White River, we suggest that further investigation is warranted to assess potential adverse impacts to these species, as well as determine the source of mercury contamination. The largest roundtail chubs contained mercury concentrations as high as those found in Colorado pikeminnow. Based on the potential risk associated with mercury exposure in these two sensitive fish species, this information should be used by conservation teams when evaluating threats.
Barb Osmundson also got involved with one of the wastewater treatment plants in the Grand Valley (Persigo) that discharges into the Colorado River. She has pre-and post diffuser data. The effluent is released into a backwaters where tagged fish have been located. The diffuser is an improvement to mix the effluent. Currently 2 of the 4 plants in the grand Valley have diffusers. She is working with Fruita and Clifton to encourage them to add diffusers.

Colowyo BO

The Grand Junction Environmental Contaminants staff provided technical assistance for the ColoWyo Biological Opinion (BO) recently issued by the Grand Junction, CO ecological services office. Mercury concentrations discovered during the research project previously described (“Mercury exposure to the endangered Colorado pikeminnow”) helped to influence the adoption of conservation measures described in this BO.

As a result of a legal challenge (WildEarth Guardians v. U.S. Office of Surface Mining et al., Case 1:13-cv-00518-RBJ (D. Colo. 2015)), the District Court of Colorado required OSMRE to
review their action (including any effects from that action) and complete additional analysis under the National Environmental Policy Act (NEPA). The Proposed Action includes future mining at the South Taylor/Lower Wilson Permit Area, and the interrelated activity of burning the mined coal at the Craig Generating Station. Much of the coal produced at the Colowyo Mine (South Taylor and West pits) since 2008 has been sent to the Craig Generating Station in Craig, Colorado. It was determined that coal combustion at the Craig Generating Station was a reasonably foreseeable indirect effect under NEPA of the South Taylor/Lower Wilson mine plan authorization. The ColoWyo BO addresses the effects to the four endangered fish and their critical habitats from contaminants released from coal combustion and mine discharge.

Combustion of coal releases the following pollutants: sulfur dioxide, particulate matter, nitrogen oxides (NOx), mercury (Hg), selenium, and carbon dioxide. The Craig Generating Station, along with all coal fired power plants, has measures in place that reduce mercury and other emissions. Despite emission reduction measures, and for the purposes of the consultation, it was estimated that 7.8 kg of mercury (3.13 x 2.5) would be emitted annually from the Craig Generating Station from the combustion of the Colowyo coal. The Service’s BO included an evaluation of the proposed action’s effects to the Colorado pikeminnow, razorback sucker, humpback chub, and bonytail and their critical habitat. Conservation measures are actions that will be taken by the Federal agency or applicant, and serve to minimize or compensate for, project effects on the species under review. As part of the proposed action, Colowyo has committed to the conservation measures below that are intended to advance the scientific information on the potential effects of coal combustion to the affected species. Also included are measures intended to improve the status of the four endangered fish by supporting the recovery program.

The following conservation measures will be implemented for the direct benefit and ultimate conservation of the endangered Colorado River fish in the Yampa and White River basins. By being included in the proposed action these conservation measures are now mandatory commitments of the project proponent. As described in the BA, the applicant has committed to the following conservation measures:

1) Species Preservation and Recovery Actions Funding. Colowyo will contribute $50,000 to the National Fish & Wildlife Foundation (NFWF) to implement recovery actions overseen by the Recovery Program. This measure would directly benefit the endangered Colorado River fish species in the two rivers impacted by mining and combustion of coal mined at the Colowyo Mine. Funding will be provided within 30 days of receipt of the South Taylor/Lower Wilson mining plan approval from OSMRE. The funds are to be directed toward the control of nonnative fish species in both the Yampa and White River’s designated critical habitat for the Colorado Pike Minnow, or to support other recovery activities that directly benefit the endangered fish in the action area such as habitat improvement.

2) Mercury Deposition Modeling. Due to the uncertainty of understanding about where all of the mercury that is being deposited into the Yampa and White River Basins originates from, Colowyo and their parent organization Tri-State, have committed to funding a study to further develop the knowledge of mercury source attribution for future decision
making. The overall goal of this effort is to improve the amount of information available to researchers and policy makers regarding mercury in the Yampa and White River basins.

The Electric Power Research Institute (EPRI) will conduct an air quality deposition modeling analysis to determine the sources of mercury being deposited in the Yampa and White River basins in northwest Colorado. Mercury is a global pollutant and may undergo atmospheric transport over both short and very long (intercontinental) distances depending on its chemical form. The attribution of sources contributing to mercury deposition in the Yampa and White River Basins will be determined from modeling conducted at multiple geographic scales: global, regional and local. As done by EPRI in the San Juan River Basin (EPRI 2014), a global mercury model, GEOS-Chem (Goddard Earth Observing System Chemistry), will be applied to provide concentrations of mercury in the United States due to distant sources. The CMAQ model (Congestion Mitigation and Air Quality) and CMAQ-APT (CMAQ with Advanced Plume Treatment) model will be used by EPRI to simulate emissions and deposition at a finer scale. At the local level individual sources will be modeled to determine their contribution to loading in the analysis area. The atmospheric models keep track of which sources or source categories contribute to eventual deposition by “tagging” or labeling each unit of mercury by where it originated. Tags are carried along with the calculations for deposition so that the analysis of deposited mercury into the local analysis area can show how much and from which sources. Deposition receptors will be identified in the local scale modeling.

The deposition modeling and source attribution analysis for the Yampa and White River basins will be conducted similar to the deposition modeling and source attribution analysis performed for the San Juan River Basin Project in the Four Corners region. The analysis will consider anthropogenic and natural sources of mercury deposition and will model the transport, chemical transformation and deposition of mercury under both wet and dry conditions. Colowyo will fund the deposition modeling analysis to an amount not to exceed $224,000.00. The modeling effort will be initiated within 30 days of the approval of the mining permit and will be completed within 24 months. Information gathered from this modeling effort will fill an obvious gap in the information available for the protection of the endangered Colorado River fish species from contaminants. Results of the study will aid in planning for the recovery of endangered fish and other listed species potentially affected by mercury contamination in the Yampa and White River Basins.

Salinity Coordinator The Grand Junction EC staff continues in their role as the Salinity Coordinator for the Service on the Colorado River Basin Salinity Control Program. This position is responsive to the request by various Federal and state and local programs to reduce salinity concentrations within the upper Colorado River Basin to meet salinity compact requirements with Mexico at the US/Mexican Border. Direct results of the Salinity Control Program are reductions in canal leakage, improved delivery systems, more efficient irrigation practices, and protecting wildlife habitat values. This program ties into the Aspinall Biological Opinion to reduce selenium concentrations in the Gunnison Basin with the ultimate effect of
reducing selenium concentrations throughout the upper and lower Colorado River Basins.

Pariette Draw Selenium and TDS loads to Green River: The Pariette Draw is a tributary of the Green River that is not supporting its warm water fisheries and waterfowl beneficial use classifications due to violations of the criterion for selenium. EPA approved Total Daily Maximum Daily Loads (TMDL) for selenium, total dissolved solids (TDS), and boron, and in the TMDL they included best management practices for mitigating the potential effects of TDS, selenium, and boron to Pariette Draw and Green River aquatic habitats. The Utah Ecological Services (ES) Field Office continues to work with Utah Division of Water Quality to investigate sources and fate of selenium within the Pariette Draw and wetlands. The Utah ES office received funding in 2012 to conduct water quality monitoring and wetland characterization in Pariette Draw Watershed in 2013 with the Utah Division of Water Quality, Utah State University, and other stakeholders. The project will span over two years and provide selenium exposure data for several biological matrices, including fish. Due to staffing shortfalls in the Utah ES office, Utah State University agreed to take over the field component of this project in 2013.

Graduate student Colleen Jones evaluated selenium concentrations at several sites in the Pariette Draw, in surface water and pore water, soil and plants. She also sampled volatile Se to evaluate selenium fate and transport in the system. Avian egg and fish samples were collected in 2014 and more will be collected in 2015. A spatially explicit exposure model (SEEM) is being worked on to evaluate selenium exposure risk to a variety of bird, fish and other important species in the Pariette Wetlands. Besides characterizing current selenium exposure risk, the SEEM model can also be used to support decision-making for future selenium reduction or management actions.” Barb Osmundson collected data in muscle plugs in endangered fish from 2014 and will update Table 1 incorporating data from razorbacks, bonytail and Colorado pikeminnow.

II.B.1.a. Identify actions to reduce selenium contamination to levels that will not impede recovery (Ongoing)

Selenium Task Force The Grand Junction office continues to participate with the Selenium Task Force. The goal of the selenium task force is to meet the selenium water quality standard for the protection of aquatic life in the Gunnison River. The goal of the selenium management program is to meet the selenium water quality standard for the protection of aquatic life in the Gunnison River and also to reduce selenium concentrations that would impede recovery in critical habitat in the Gunnison River.

Technical Assistance The Aspinall Programmatic Biological Opinion (BO) was finalized in 2010. A Selenium Reduction Program was formed in conjunction with the BO, to implement remediation projects associated with selenium exceedances in the Uncompahgre Project area and downstream. The Grand Junction EC staff has been an active member in the Selenium Management Program since 2012, attending all work group meetings.

Grand Junction EC staff submitted an off-refuge proposal in 2010 which was accepted for 2011 funding, to determine selenium concentrations in endangered fish in the Gunnison River, as well
as surrogate fish species in the Gunnison River. While Colorado Parks & Wildlife and CRFP staff conducted endangered fish population surveys, muscle plug samples were collected for selenium analysis. Results from this selenium study will be used in the new Selenium Management Program (SMP) to determine baseline selenium concentrations and evaluate effectiveness of selenium remediation efforts. Selenium concentrations in endangered fish in the Gunnison River have not yet been determined. Selenium concentrations in surrogate fish species (roundtail chub, carp, and speckled dace) collected in 2010, 2011, and 2012 will be compared to the same species collected in 1992, to investigate any changes over the last 20 years and remediation efforts taken thus far by the selenium task force.

Selenium concentrations will be compared to toxicity reference values associated with adverse effects, in particular to those values associated with reproductive impairment. These tissue selenium concentrations will also be divided by water concentrations to determine bioaccumulation factors. The bioaccumulation factors will in turn be used to help assess load reductions needed by the Selenium Management Program in remediation efforts to minimize risk of reproductive impairment for the endangered Colorado River fish.

During 2010 fish population surveys conducted by the CPW, muscle plug samples were taken from 15 roundtail chubs and 15 carp for selenium analysis. Fifteen whole body speckled dace were also collected for selenium analysis. These samples were collected from the upper portion of designated critical habitat in the Gunnison River from the Uncompahgre River confluence in Delta, CO (RM 56.3) to Escalante at RM 44.1. No endangered fish were encountered during this survey, so no endangered fish muscle plugs were able to be collected. Muscle plug collections continued during 2011 summer on the lower stretch of critical habitat in the Gunnison River between Escalante (RM 44.1) and the Colorado River confluence (RM 0.7). During 2011 fish population surveys conducted by Colorado River Fisheries Project, muscle plugs were taken from 15 roundtail chub, 15 common carp, and four bonytail for selenium analysis. Also, 15 whole body speckled dace were collected, and egg samples were taken from 7 white suckers for selenium analysis. Nine composite samples of invertebrates were collected from Delta to Grand Junction to examine selenium concentrations in dietary items. During 2012 fish population surveys conducted by Colorado River Fisheries Project, muscle plugs were taken from 15 carp, 5 razorback suckers, and 4 Colorado pikeminnow for selenium analysis. Whole body samples of 16 speckled dace, and 6 composite invertebrate samples were also collected. Results of all data sets are displayed in Table 1.

Selenium concentrations in muscle plugs from 14 out of 30 total roundtail chub, 42 out of 44 carp, and 2/4 bonytail exceeded the 8 ug/g DW toxicity guideline (Lemly 1996) for selenium in fish muscle tissue. The range in selenium concentrations found in bonytail from 0.8 to 8.6 ug/g DW is most likely a function of how long they had been at large in the Gunnison River or in Butch Craig pond (adjacent to the Gunnison River) after release from the hatchery. Selenium concentrations in 1 of the 3 captured Colorado pikeminnow exceeded the toxicity guideline of 8 ug/g DW. One Colorado pikeminnow captured in Redlands fish ladder July 31, 2012 was
recaptured in the Gunnison River at river mile 15.2 on October 4, 2012. While in the Gunnison River, the selenium concentration in muscle increased from 2.9 to 5.1 ug./g DW. Selenium concentrations in razorback suckers were <2 ug/g DW in recently released hatchery raised fish, but one razorback sucker at large in the Gunnison River contained 7.3 ug/g DW, approaching the 8 ug/g DW toxicity guideline. Selenium concentrations in all whole body speckled dace samples exceeded the 4 ug/g DW selenium toxicity guideline for whole body fish (Lemly 1996).

Selenium concentrations in Gunnison River water samples measured at Whitewater demonstrated a statistically significant downward trend from 1986-2008 (Mayo and Leib, 2012). Compared to those collected in 1992, speckled dace selenium concentrations in 2010-2012 also showed a decreasing trend. There was, however, no significant decrease in muscle plug selenium in roundtail chubs when comparing recent samples to those collected in 1992. Decreasing selenium trends in the Gunnison River are in part due to efforts of the salinity control program and selenium task force to reduce deep percolation of irrigation water into Mancos shale soils. Future efforts of these two groups, plus the newly formed selenium management program, will aim at meeting the selenium state water quality standard, and benefiting the recovery of the endangered Colorado River fish. A final report will be completed on this project in 2016.

Atlas Tailings site

In 2014 Paul Abate and Chris Cline visited the Atlas Tailings site to discuss proposed modifications to the backwater habitats near the tailings pile that are needed because the removal is beginning to encroach into parts of the tailings where shallow groundwater pumping is occurring to keep ammonia out of the backwaters (they have removed a lot of tailings). They discussed several approaches and options, and they were going to get back to us with some proposed modifications. Atlas’s remediation team started sending out year-end reports so it’s probably time to touch base to see if they’ve got a new mitigation plan.

Carbon County Utah experienced widespread flooding on September 27, 2014 resulting in the shutdown of the Price River wastewater treatment plant. A four foot wall of water covered the treatment plant resulting in about one to two million gallons of raw sewage discharged into the river. The plant was operational within a few days. However, it required removing mud from the facility and cleaning motors, aerators, and blowers. There was a remarkable recovery by the community. Paul Abate is investigating whether the PIT tag reader on the Price River may have detected fewer readings during late September and early October.
Table 1. Selenium concentrations in biota collected from the lower Gunnison River.

<table>
<thead>
<tr>
<th>Species</th>
<th>Collection Date</th>
<th>River Mile</th>
<th>% Moisture</th>
<th>Selenium (ug/g DW)</th>
<th>Length (mm)</th>
<th>Matrix¹</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roundtail Chub</td>
<td>07/21/10</td>
<td>51.7</td>
<td>79.3</td>
<td>12.8</td>
<td>380</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>07/21/10</td>
<td>51.7</td>
<td>78.9</td>
<td>7.8</td>
<td>264</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>07/21/10</td>
<td>51.7</td>
<td>78.1</td>
<td>7.0</td>
<td>280</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>07/21/10</td>
<td>51.7</td>
<td>78.2</td>
<td>5.8</td>
<td>300</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>07/21/10</td>
<td>51.7</td>
<td>79.7</td>
<td>10.8</td>
<td>264</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>07/21/10</td>
<td>53.0</td>
<td>79.2</td>
<td>8.0</td>
<td>264</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>07/21/10</td>
<td>53.8</td>
<td>78.1</td>
<td>9.5</td>
<td>383</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>07/21/10</td>
<td>53.8</td>
<td>77.9</td>
<td>6.5</td>
<td>330</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>07/21/10</td>
<td>54.6</td>
<td>77.6</td>
<td>8.3</td>
<td>252</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>07/21/10</td>
<td>54.6</td>
<td>78.5</td>
<td>8.0</td>
<td>242</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>07/21/10</td>
<td>54.6</td>
<td>78.2</td>
<td>8.8</td>
<td>245</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>07/21/10</td>
<td>54.6</td>
<td>77.5</td>
<td>32.3</td>
<td>293</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>07/21/10</td>
<td>54.6</td>
<td>78.4</td>
<td>8.7</td>
<td>391</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>07/21/10</td>
<td>54.6</td>
<td>78.4</td>
<td>6.4</td>
<td>403</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>08/17/11</td>
<td>39.1</td>
<td>79.4</td>
<td>6.5</td>
<td>337</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>08/18/11</td>
<td>21.3</td>
<td>80.0</td>
<td>6.2</td>
<td>297</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>08/17/11</td>
<td>39.1</td>
<td>80.4</td>
<td>7.1</td>
<td>315</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>08/19/11</td>
<td>12.9</td>
<td>80.7</td>
<td>8.5</td>
<td>291</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>08/17/11</td>
<td>39.1</td>
<td>79.3</td>
<td>5.6</td>
<td>339</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>08/19/11</td>
<td>12.9</td>
<td>80.0</td>
<td>8.9</td>
<td>293</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>08/19/11</td>
<td>4.4</td>
<td>79.8</td>
<td>7.9</td>
<td>347</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>08/19/11</td>
<td>4.4</td>
<td>80.0</td>
<td>8.8</td>
<td>275</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>08/19/11</td>
<td>12.9</td>
<td>79.9</td>
<td>7.8</td>
<td>267</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>08/19/11</td>
<td>12.9</td>
<td>79.5</td>
<td>7.8</td>
<td>245</td>
<td>MP</td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Selenium concentrations in biota collected from the lower Gunnison River.

<table>
<thead>
<tr>
<th>Species</th>
<th>Collection Date</th>
<th>River Mile</th>
<th>% Moisture</th>
<th>Selenium (ug/g DW)</th>
<th>Length (mm)</th>
<th>Matrix¹</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roundtail Chub</td>
<td>08/18/11</td>
<td>21.3</td>
<td>80.7</td>
<td>5.5</td>
<td>332</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>08/19/11</td>
<td>12.9</td>
<td>80.7</td>
<td>11.2</td>
<td>264</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>08/18/11</td>
<td>21.3</td>
<td>80.7</td>
<td>6.9</td>
<td>308</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>08/17/11</td>
<td>39.1</td>
<td>79.7</td>
<td>5.5</td>
<td>340</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Roundtail Chub</td>
<td>08/18/11</td>
<td>21.3</td>
<td>81.5</td>
<td>7.0</td>
<td>390</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>07/21/10</td>
<td>53.0</td>
<td>77.2</td>
<td>13.5</td>
<td>545</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>(duplicate)</td>
<td></td>
<td></td>
<td>77.3</td>
<td>13.7</td>
<td></td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>07/21/10</td>
<td>53.0</td>
<td>76.8</td>
<td>8.4</td>
<td>440</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>07/21/10</td>
<td>53.0</td>
<td>75.6</td>
<td>20.4</td>
<td>535</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>07/21/10</td>
<td>53.0</td>
<td>74.9</td>
<td>9.9</td>
<td>547</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>(duplicate)</td>
<td></td>
<td></td>
<td>76</td>
<td>10</td>
<td></td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>07/21/10</td>
<td>53.0</td>
<td>74.4</td>
<td>8.5</td>
<td>500</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>07/21/10</td>
<td>53.0</td>
<td>77.3</td>
<td>12.8</td>
<td>470</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>07/21/10</td>
<td>53.8</td>
<td>74.3</td>
<td>8.8</td>
<td>550</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>07/21/10</td>
<td>53.8</td>
<td>74.4</td>
<td>9.4</td>
<td>560</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>07/21/10</td>
<td>53.8</td>
<td>75.3</td>
<td>11</td>
<td>455</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>(duplicate)</td>
<td></td>
<td></td>
<td>72.5</td>
<td>10.1</td>
<td></td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>07/21/10</td>
<td>53.8</td>
<td>76.4</td>
<td>11.2</td>
<td>615</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>07/21/10</td>
<td>54.6</td>
<td>74.6</td>
<td>16.5</td>
<td>610</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>07/21/10</td>
<td>54.6</td>
<td>73.8</td>
<td>19.3</td>
<td>552</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>07/21/10</td>
<td>54.6</td>
<td>76</td>
<td>15.4</td>
<td>448</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>07/21/10</td>
<td>54.6</td>
<td>73.4</td>
<td>12.5</td>
<td>453</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>07/21/10</td>
<td>54.6</td>
<td>75.2</td>
<td>11.7</td>
<td>505</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>08/19/11</td>
<td>4.4</td>
<td>72.5</td>
<td>10.2</td>
<td>573</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>08/18/11</td>
<td>21.3</td>
<td>79.3</td>
<td>12.2</td>
<td>595</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>08/18/11</td>
<td>23.1</td>
<td>78.5</td>
<td>8.50</td>
<td>604</td>
<td>MP</td>
<td></td>
</tr>
</tbody>
</table>

¹MP=Muscle plug, WB=Whole body, Composite=Multiple specimens
Table 1. Selenium concentrations in biota collected from the lower Gunnison River.

<table>
<thead>
<tr>
<th>Species</th>
<th>Collection Date</th>
<th>River Mile</th>
<th>% Moisture</th>
<th>Selenium (ug/g DW)</th>
<th>Length (mm)</th>
<th>Matrix¹</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Carp</td>
<td>08/18/11</td>
<td>12.9</td>
<td>79.4</td>
<td>10.2</td>
<td>685</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>08/17/11</td>
<td>39.1</td>
<td>77.9</td>
<td>10.6</td>
<td>476</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>08/19/11</td>
<td>4.4</td>
<td>77.5</td>
<td>10.0</td>
<td>598</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>08/19/11</td>
<td>12.9</td>
<td>79.0</td>
<td>10.9</td>
<td>547</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>08/19/11</td>
<td>14.4</td>
<td>70.7</td>
<td>8.5</td>
<td>580</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>08/17/11</td>
<td>39.1</td>
<td>78.0</td>
<td>9.7</td>
<td>525</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>(duplicate)</td>
<td>08/17/11</td>
<td>39.1</td>
<td>82.3</td>
<td>32.2</td>
<td>360</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>81.8</td>
<td></td>
<td>35.1</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>08/18/11</td>
<td>21.3</td>
<td>76.4</td>
<td>10.5</td>
<td>493</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>08/19/11</td>
<td>12.9</td>
<td>76.7</td>
<td>10.9</td>
<td>545</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>(duplicate)</td>
<td>08/19/11</td>
<td>21.3</td>
<td>77.4</td>
<td>11.6</td>
<td>591</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>77.7</td>
<td></td>
<td>11.1</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>08/19/11</td>
<td>4.4</td>
<td>72.0</td>
<td>9.7</td>
<td>540</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>08/18/11</td>
<td>21.3</td>
<td>79.7</td>
<td>11.0</td>
<td>564</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>08/27/12</td>
<td>52.7</td>
<td>76.2</td>
<td>8.49</td>
<td>565</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>08/27/12</td>
<td>54.4</td>
<td>76.6</td>
<td>9.76</td>
<td>643</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>(duplicate)</td>
<td>08/28/12</td>
<td>47.6</td>
<td>79.8</td>
<td>8.04</td>
<td>546</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>76.4</td>
<td></td>
<td>7.40</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>08/29/12</td>
<td>21.8</td>
<td>72.2</td>
<td>8.47</td>
<td>8.47</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>08/29/12</td>
<td>21.8</td>
<td>75.7</td>
<td>6.03</td>
<td>8.47</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>08/29/12</td>
<td>35.4</td>
<td>75.9</td>
<td>9.49</td>
<td>8.47</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>(duplicate)</td>
<td>08/30/12</td>
<td>18.2</td>
<td>71.9</td>
<td>9.39</td>
<td>614</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>85.3</td>
<td></td>
<td>8.66</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>08/30/12</td>
<td>14.5</td>
<td>77.9</td>
<td>10.45</td>
<td>10.45</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>08/30/12</td>
<td>13.5</td>
<td>78.9</td>
<td>6.87</td>
<td>716</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>08/30/12</td>
<td>12.4</td>
<td>78.6</td>
<td>9.15</td>
<td>676</td>
<td>MP</td>
<td></td>
</tr>
</tbody>
</table>

¹MP=Muscle plug, WB=Whole body, Composite=Multiple specimens
Table 1. Selenium concentrations in biota collected from the lower Gunnison River.

<table>
<thead>
<tr>
<th>Species</th>
<th>Collection Date</th>
<th>River Mile</th>
<th>Moisture</th>
<th>Selenium (ug/g DW)</th>
<th>Length (mm)</th>
<th>Matrix¹</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Carp</td>
<td>08/31/12</td>
<td>8.3</td>
<td>74.3</td>
<td>7.64</td>
<td>MP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>10/05/12</td>
<td>12.1</td>
<td>75.6</td>
<td>10.1</td>
<td>559</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>10/03/12</td>
<td>35</td>
<td>77.7</td>
<td>10.7</td>
<td>555</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>10/03/12</td>
<td>35</td>
<td>78.2</td>
<td>9.67</td>
<td>658</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Bonytail</td>
<td>06/09/11</td>
<td>Butch</td>
<td>80.5</td>
<td>8.43</td>
<td>336</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Bonytail</td>
<td>08/23/11</td>
<td>Craig pond</td>
<td>74.4</td>
<td>0.89</td>
<td>352</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Bonytail (duplicate)</td>
<td>08/19/11</td>
<td>12.9</td>
<td>72.4</td>
<td>0.81</td>
<td>308</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Bonytail</td>
<td>08/29/11</td>
<td>RFL</td>
<td>79.0</td>
<td>8.58</td>
<td>366</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Razorback sucker</td>
<td>10/01/12</td>
<td>54</td>
<td>80.8</td>
<td>1.53</td>
<td>380</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Razorback sucker</td>
<td>10/01/12</td>
<td>54</td>
<td>77.3</td>
<td>1.35</td>
<td>382</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Razorback sucker</td>
<td>10/05/12</td>
<td>---</td>
<td>78.2</td>
<td>7.28</td>
<td>456</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Razorback sucker</td>
<td>10/05/12</td>
<td>4.3</td>
<td>72.8</td>
<td>5.2</td>
<td>448</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Razorback sucker</td>
<td>10/04/12</td>
<td>21.4</td>
<td>78.7</td>
<td>1.4</td>
<td>356</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Colorado pikeminnow</td>
<td>10/04/12</td>
<td>15.2</td>
<td>78.2</td>
<td>5.08</td>
<td>645</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Colorado pikeminnow</td>
<td>07/31/12</td>
<td>RFL</td>
<td>66.2</td>
<td>2.93</td>
<td>640</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Colorado pikeminnow</td>
<td>07/18/12</td>
<td>RFL</td>
<td>83.7</td>
<td>8.68</td>
<td>518</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Colorado pikeminnow</td>
<td>07/18/12</td>
<td>RFL</td>
<td>76.4</td>
<td>5.68</td>
<td>398</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Speckled dace</td>
<td>07/21/10</td>
<td>53.8</td>
<td>67.2</td>
<td>8.29</td>
<td>91</td>
<td>WB</td>
<td></td>
</tr>
<tr>
<td>Speckled dace</td>
<td>07/21/10</td>
<td>53.0</td>
<td>63.9</td>
<td>7.13</td>
<td>106</td>
<td>WB</td>
<td></td>
</tr>
<tr>
<td>Speckled dace</td>
<td>07/21/10</td>
<td>53.0</td>
<td>63.3</td>
<td>7.44</td>
<td>94</td>
<td>WB</td>
<td></td>
</tr>
</tbody>
</table>

¹MP=Muscle plug, WB=Whole body, Composite=Multiple specimens
Table 1. Selenium concentrations in biota collected from the lower Gunnison River.

<table>
<thead>
<tr>
<th>Species</th>
<th>Collection Date</th>
<th>River Mile</th>
<th>% Moisture</th>
<th>Selenium (ug/g DW)</th>
<th>Length (mm)</th>
<th>Matrix¹</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speckled dace</td>
<td>07/21/10</td>
<td>53.0</td>
<td>66.2</td>
<td>6.11</td>
<td>108</td>
<td>WB</td>
<td></td>
</tr>
<tr>
<td>Speckled dace</td>
<td>07/21/10</td>
<td>53.0</td>
<td>67.0</td>
<td>6.09</td>
<td>95</td>
<td>WB</td>
<td></td>
</tr>
</tbody>
</table>

¹MP=Muscle plug, WB=Whole body, Composite=Multiple specimens
<table>
<thead>
<tr>
<th>Species</th>
<th>Collection Date</th>
<th>River Mile</th>
<th>% Moisture</th>
<th>Selenium (ug/g DW)</th>
<th>Length (mm)</th>
<th>Matrix¹</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speckled dace</td>
<td>08/19/11</td>
<td>11.4</td>
<td>76.8</td>
<td>8.41</td>
<td>75</td>
<td>WB</td>
<td></td>
</tr>
<tr>
<td>Speckled dace</td>
<td>08/19/11</td>
<td>12.9</td>
<td>77.3</td>
<td>11.2</td>
<td>78</td>
<td>WB</td>
<td></td>
</tr>
<tr>
<td>Speckled dace</td>
<td>08/27/12</td>
<td>50.9</td>
<td>68.6</td>
<td>8.14</td>
<td>118</td>
<td>WB</td>
<td></td>
</tr>
</tbody>
</table>

¹MP=Muscle plug, WB=Whole body, Composite=Multiple specimens

Table 1. Selenium concentrations in biota collected from the lower Gunnison River.
Table 1. Selenium concentrations in biota collected from the lower Gunnison River.

<table>
<thead>
<tr>
<th>Species</th>
<th>Collection Date</th>
<th>River Mile</th>
<th>% Moisture</th>
<th>Selenium (ug/g DW)</th>
<th>Length (mm)</th>
<th>Matrix¹</th>
<th>Notes²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invertebrates</td>
<td>08/12/11</td>
<td>50.3</td>
<td>96.9</td>
<td>7.52</td>
<td></td>
<td>Composite</td>
<td>Mostly Hydropsychidae</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>08/12/11</td>
<td>56.3</td>
<td>77.0</td>
<td>8.24</td>
<td></td>
<td>Composite</td>
<td>Mostly Hydropsychidae-BUC</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>08/12/11</td>
<td>57.0</td>
<td>77.6</td>
<td>5.46</td>
<td></td>
<td>Composite</td>
<td>Mostly Hydropsychidae-AUC</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>08/12/11</td>
<td>57.0</td>
<td>68.4</td>
<td>5.67</td>
<td></td>
<td>Composite</td>
<td>Perlodida-AUC</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>08/12/11</td>
<td>56.3</td>
<td>66.7</td>
<td>11.3</td>
<td></td>
<td>Single</td>
<td>Perlodida-BUC</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>07/29/11</td>
<td>4.8</td>
<td>72.3</td>
<td>7.31</td>
<td></td>
<td>Single</td>
<td>Odonata-1 nymph</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>07/29/11</td>
<td>4.8</td>
<td>97.2</td>
<td>7.98</td>
<td></td>
<td>Composite</td>
<td>Mostly Hydropsychidae</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>07/29/11</td>
<td>9.9-15.4</td>
<td>97.5</td>
<td>8.74</td>
<td></td>
<td>Composite</td>
<td>Mostly Hydropsychidae, few mayflies</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>07/28/12</td>
<td>33.0</td>
<td>76.3</td>
<td>8.39</td>
<td></td>
<td>Composite</td>
<td>Mostly Hydropsychidae</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>06/25/12</td>
<td>8.5</td>
<td>73.8</td>
<td>9.19</td>
<td></td>
<td>Composite</td>
<td>Mostly Hydropsychidae</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>06/26/12</td>
<td>22</td>
<td>89.3</td>
<td>5.33</td>
<td></td>
<td>Composite</td>
<td>Mostly Hydropsychidae</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>06/28/12</td>
<td>57</td>
<td>90</td>
<td>6.39</td>
<td></td>
<td>Composite</td>
<td>Hydropsychidae-AUC</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>06/28/12</td>
<td>56</td>
<td>87.4</td>
<td>6.45</td>
<td></td>
<td>Composite</td>
<td>Hydropsychidae-BUC</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>06/28/12</td>
<td>48</td>
<td>91</td>
<td>5.91</td>
<td></td>
<td>Composite</td>
<td>Hydropsychidae</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>07/03/12</td>
<td>3</td>
<td>88.3</td>
<td>5.99</td>
<td></td>
<td>Composite</td>
<td>RFL, Mostly Hydropsychidae-RFL</td>
</tr>
</tbody>
</table>

¹MP=Muscle plug, WB=Whole body, Composite=Multiple specimens ²BUC=Below Uncompahgre confluence, AUC=Above Uncompahgre confluence, RFL=Redlands fish ladder
II.B.2.a. Ensure that all new petroleum product pipelines have emergency shutoff valves (Ongoing)

USFWS Ecological Services addresses this through Section 7 consultation, although not all pipeline approvals have a federal nexus that results in consultation. USFWS should consider how best to address this concern.

II.B.2.b. Identify locations of existing petroleum-product pipelines potentially affecting critical habitat and determine if they have emergency shutoff valves. (Pending)

The Pipeline and Hazardous Materials Safety Administration has developed the Pipeline Integrity Management Mapping Application (PIMMA) for use by pipeline operators and Federal, state, and local government officials. This should be a valuable tool in assessing threats to endangered fish. USFWS should investigate use of PIMMA to address existing pipelines that may need shutoff valves.

II.B.3. Review and recommend modifications to State and Federal Hazardous materials spills emergency response programs (Ongoing)

Spill contingency response Environmental contaminants (EC) staff from Grand Junction and Salt Lake City maintain an ongoing presence within State and Federal hazardous materials spills emergency response programs. Through routine participation in response programs we review and recommend modifications to various response actions, contingency plans, and spill drills affecting the CO River and tributaries. EC staff met with EPA in November and December of 2012 to discuss improvements to the Green River Spill Contingency Plan. EPA met with federal and state agencies, which act as natural resource trustees, and industry to develop a watershed protection plan that would be more effective than the Green River Spill Contingency Plan, which was primarily meant to facilitate coordination among federal and state response agencies. As part of the watershed protection plan for the Green River Basin, EPA is updating its information concerning FWS trust resources and best coordination and communication procedures in the event of an oil spill or release of hazardous substance. Meetings with EPA, Chevron, and EC and Fisheries staff were conducted during 2013 in Rangely, CO and Vernal Utah to address pipeline locations and spill planning for the Green River watershed, including tributaries White and Yampa Rivers. In 2015, EPA initiated planning efforts for the development of a Colorado River Spill Contingency Plan. Colorado EC staff has participated in these planning meetings and activities since early February of 2015. Meetings attended have included those in Granby and Grand Junction, CO.

II.C.1. Support actions to reduce or eliminate contaminant impacts of selenium in the Grand Valley (Ongoing)

Participation in the Selenium Task Force and the Selenium Management Program

The Grand Junction EC staff has remained involved with both the Gunnison Basin and Grand Valley Selenium Task Forces and Selenium Management Program. Force The Grand Junction office continues to participate with the Selenium Task Force. The goal of the selenium task
force is to meet the selenium water quality standard for the protection of aquatic life in the Gunnison River. The goal of the selenium management program is to meet the selenium water quality standard for the protection of aquatic life in the Gunnison River and also to reduce selenium concentrations that would impede recovery in critical habitat in the Gunnison River.

Lower Colorado River (Segment 3) Mixing Zone Sampling with EPA

During 2011, the Colorado Water Quality Control Commission (Commission) revised its list of Water-Quality-Limited Segments Requiring Total Maximum Daily Loads (TMDLs) (Regulation #93), including delisting of the lower Colorado River main stem between the Gunnison River confluence and Colorado-Utah Stateline (segment 3) for impairment by selenium. This segment is included in designated critical habitat for the endangered Colorado River fish. The standard for impaired waterways, developed in 2002, is 4.6 parts per billion (ppb) selenium. The Commission is proposed the delisting due to the 85th percentile selenium concentration of 4.3 ppb for 37 water samples collected from the Lower Colorado River segment between 2002 and 2006.

Barb Osmundson, who has worked for many years on selenium issues and recovery of the 4 listed Colorado River fishes, reviewed the proposed regulation change, and expressed concern related to the proposal, including:

1) Use of the 85th percentile selenium concentrations is not accurate enough to support delisting the segment. The difference between the 85th percentile value of the samples and the standard is not enough to disallow the possibility of analytical error.

2) Geographical areas and timing of data collections biased the samples towards lower selenium concentrations by avoiding collection below smaller tributaries that contribute higher loads to the Colorado River system, and lack of sampling during low flow seasons and drought years when selenium values would be more concentrated.

Barb provided written testimony to the Commission regarding these concerns on October 27, and testified at the public hearing before the Commission on December 12, 2011. Despite concerns, the Commission ended up delisting Segment 3.

EPA understood Service concerns and was able to secure funding starting in 2012 to collect water samples for selenium analysis below the confluence of high selenium tributaries that empty into this segment (3) of the lower Colorado R. Samples were collected in 2012 by Grand Junction EC staff during August and again during September (accompanied by EPA staff Karl Herman). During 2013, samples were collected during August, but the government shutdown prevented the scheduled sampling during October. Sampling by Fish and Wildlife Service EC staff and EPA occurred in August and October of 2014 and continued in August and October, 2015. Force The Grand Junction office continues to participate with the Selenium Task Force. The goal of the selenium task force is to meet the selenium water quality standard for the protection of aquatic life in the Gunnison River. The goal of the selenium management program is to meet the selenium water quality standard for the
protection of aquatic life in the Gunnison River and also to reduce selenium concentrations that would impede recovery in critical habitat in the Gunnison River. This impacts critical habitat and sites where hatchery raised endangered fish are released during recovery.

II.D. Support actions to reduce or eliminate selenium impacts at Ashley Creek and Stewart Drain (Ongoing)

The Recovery Program, UDWR, FWS, and Texas A&M University, is currently researching Selenium uptake in razorback sucker at Stewart Lake and Johnson Bottom wetlands. Field samples of age-0 razorback sucker (incidental mortalities), larval razorback, and other surrogate species have been collected opportunistically since 2013. Selenium results are currently being analyzed and are expected to be released in 2017, in support of a revised Stewart Lake management plan.

Contacts:

Barb Osmundson
U.S. Fish and Wildlife Service
Environmental Contaminants Division
Grand Junction Ecological Services Field Office
764 Horizon Dr., Bldg. B
Grand Junction, CO 81506
ph 970-243-2778 ext. 21
fx. 970-245-6933
barb_osmundson@fws.gov

Chris Cline
U.S. Fish and Wildlife Service
Environmental Contaminants Division
Utah Ecological Services Field Office
2369 West Orton Circle, Suite 50
West Valley City, UT 84119
ph. 801.975.3330
fx. 801.975.3331
Chris_Cline@fws.gov